
The plate recognition system expects a certain type of input in
order to function well. The image must be cropped to only
include the plate, and the characters must not be significantly
rotated or skewed. That means localization must perform a
 custom-coded perspective transformation. It must also be of a
sufficient resolution in order to give the recognition system
enough detail. All of this is provided by our localization function,
and an example is shown below.

During the development of this algorithm we have faced many
challenges. Errors compound, and any small error that might
happen prior to recognition might grow to a much more
significant error. One of the challenges we faced were rotations,
when a character we receive is slightly tilted, the pixel overlap
decreases very quickly, especially when it comes to thin
characters like L, I or 1. Another challenge we had to overcome are
slight variations in the output, some frames output incorrect
results, and we needed to ensure that those get squished by the
amount of correctly specified license plates. Lastly, we had to
ensure the system had enough detail to distinguish letters such
as S and 5, and B and 8, which was challenging.

Preprocessing
A number of preprocessing steps must be taken to remove
unnecessary information from the plate. First, we convert the
image to grayscale and perform contrast stretching in order to
highlight more clearly the text from the background. The image
is then binarized using a threshold manually tuned on the
training set (described in more detail later).

These steps already give quite a good result, but the plate
frame often remains and must be removed in order to not
interfere with segmentation. At this stage, virtually all noise,
including the frame, is connected to the edge of the image. For
this reason, we will now describe our custom-coded denoising
flooding operation.

The figure below shows a plate after pre-processing.

Once individual characters have been segmented, we
perform recognition using template matching. We
bitwise XOR each character with the set of all
possible character templates and score the match
based on the fraction of pixels that remain. This is our
distance metric. In order to improve the accuracy of
recognition even when characters are not perfectly
formed, we extended the set of templates with
sheared ones. This is shown on the right.

License plate
recognition

To properly evaluate the data we needed to properly split the input videos into a training and testing sets. We have taken 60% of
the given videos from a category as training data, on with which we worked to make our algorithms better and more robust. Then
with the remaining 40% we tested the data. That is we did not use those license plates during the development, thus we could see
how effective the algorithm is on newly found data, and how much is our algorithm taylored for our training set. We used the 60-40
split because we needed enough training data to cover as many edge cases as possible, but also not too much data such that we
would overfit on that data. We use accuracy as a metric and it's compared manually with hand-annotated data. When we run our
algorithm we manage to correctly identify 100% license plates from the test set from Category I and II. In Category III it is bounded
by the Localization, more precisely 50%, and In Category IV we only manage to get 25%, however that is because there are 4 videos
in the test set, which so there is only 1 correctly identified license plate. As mentioned in previous sections, parameters such as
thresholds and kernels were manually tuned against the training set by observing both the effect they have on the plate image, and
the effect they have on our numerical evaluation.

Now that we have explained how we get to the
results, lets take a look at some results. For some
plates from the training set this works very
nicely. Our algorithm seems to properly work on
all plates from Category I and II (both training and
test set). At the moment we use a simple
majority vote to determine the true license plate,
that is we output the license plate that was the
most frequent, to combat slight errors. We also
perform some post-processing using knowledge
of license plate formats, such as length.

The flooding operation is done by creating an array of seed
points. We chose 8 points located in the corners of the image
and the midpoints of the edges of the image. If these points
have value 0, nothing happens. If these points have value 1, they
are set to 0 and this procedure repeats for all neighbors.

Once the image is prepared, our algorithm performs
segmentation. This is done by summing all pixels along a
vertical axis and then using an algorithm to split the image
into individual characters where the projected sum is lower
than a certain threshold. This threshold was tuned manually
using the training set. Each individual character is then
resized to a standardized 60 * 85 pixel size to prepare for
template matching. The image below shows this.Input

Stage 1 - Flooding

Matej Havelka and Patrik Barták

Results

Challenges

Stage 3 - Template matching

Numerical evaluation

Stage 2 - Segmentation

You can see that as the "X"
found in the image is slightly
tilted, when compared to a

normal X, it does not
provide a perfect match.

This removes any shapes
connected to the seed
points. Thanks to this
procedure, we are able to
isolate the characters
against a black background.
An example is shown below:

